The project known as San Diego-Tijuana’s Border Fusion, as it is called in the text, seeks to address the border city’s critical problems of urban mass, water, energy, and transport infrastructure. The cityscape’s critical issues are water scarcity, air pollution, and industrial waste, as well as logistics and transport challenges.

The ongoing project seeks to develop an alternative land-use, infrastructure planning, and urban design solution that addresses these issues and aims to create a sustainable and livable urban environment.

Key sustainable development issues may be summed up as follows: (i) extreme water scarcity and water management problems, (ii) air pollution, (iii) industrial waste, (iv) pollution from idling vehicles at the land port where wait times can exceed 3 hours, (v) mono-functional development patterns requiring workers to commute from distant suburbs or colonias, (vi) inefficient freight, and (vii) poor industrial waste/resource management.

The project focuses on San Diego-Tijuana’s Otay Mesa district, on the US-Mexican border, which serves a dual function as the transloading/logistics center for the dual city region’s maquiladoras and other manufacturing facilities. Plans call for 5,000 new housing units (for 55,000) and 43,000 new jobs (10,700 to over 60,000).

District, which covers 10.5 km east-west/4.5 km north-south and has roughly 3,500 developable hectares, is the region’s last substantial tract of land available for development. The region’s limited developable area is currently used for general industrial activities. The district also includes the Otay Mesa Port of Entry (land freight port), the second-largest in the State of California.

Logistics center for the dual city region’s manufacturing and distribution facilities, the Otay Mesa Port of Entry is the major land border crossing for the Twin Cities and is considered the transloading/logistics center for the region’s maquiladora facilities.

The project includes the development of a proposed logistics infrastructure system designed to facilitate efficient freight, transport, and distribution of goods within the region.

A schematic site plan is provided, showing the proposed logistics infrastructure system and its integration with the existing urban landscape and natural resources. The project aims to create a sustainable and interconnected urban system that addresses the region’s critical issues and promotes sustainable development.

THE LIVING WALL

The Living Wall is a concept for integrating biologically rich infrastructure and urban design to improve the city’s ecological performance and aesthetic appeal. The wall is designed to incorporate natural elements such as vegetation, water, and soil, creating a green, sustainable, and visually appealing living space.

The Living Wall is designed to address the region’s critical issues of water scarcity, air pollution, and industrial waste, as well as to promote sustainable development and urban design.

WATER ARTERIES - CLEANED WATER

WATER VERSUS FERTILIZER

HILLTOP WATER RESERVE STORAGE +200M

Surrounding the city are large tracts of open space, including scores of industrial areas and large tracts of arid rocky plateau. These features contribute to the region’s unique geography and landscape.

The region’s limited developable area is currently used for general industrial activities. These industrial areas are characterized by large tracts of arid rocky plateau and large tracts of open space.

The Otay Mesa region is particularly prone to flood risks due to the region’s limited developable area and the large tracts of open space surrounding the city. The region’s limited developable area is currently used for general industrial activities, which are characterized by large tracts of arid rocky plateau and large tracts of open space.

To address the region’s critical issues, the project seeks to develop an alternative land-use, infrastructure planning, and urban design solution that addresses these issues and creates a sustainable and livable urban environment.

ALBERT S WEI

Senior Research Fellow
Massachusetts Institute of Technology
Cambridge, MA 02139-4007 USA
awei@mit.edu

Massachusetts Institute of Technology
Department of Architecture
37 Massachusetts Ave, 6-140 M.I.T.
Cambridge MA 02139-4007 USA
awei@mit.edu

Denis Frankman
Professor of Architecture
Massachusetts Institute of Technology
Department of Architecture
37 Massachusetts Ave, 6-140 M.I.T.
Cambridge MA 02139-4007 USA
awei@mit.edu