Using Biochar as Sand Replacement in Construction Materials

Rayan Mourad
Graduate Research Assistant
American University of Beirut

Maha Mrad
Transportation Engineer
Dar Al Handassah

Ghassan Chehab
Academic Advisor
Associate Professor
Department of Civil & Environmental Engineering
American University of Beirut

This work has been submitted for a Research in Practice Grant
WASTE MANAGEMENT CRISIS
CONSTRUCTION SAND DEPLETION & SHORTAGE
LOCAL ECO-PRACTICES - PYROLYSIS

Waste in Lebanon

Pyrolysis Plant in Lebanon

- Provision of Cheap & Clean Energy Production
- Adequate Waste Disposal & Management
- Water Conservation
- Low GHG Emissions
- Popularly Increasing Waste Management Technology Worldwide
BIOCHAR PHYSICOCHEMICAL CHARACTERIZATION

- High Specific Area > 300 m²/g
- Very Low Specific Gravity ~ 0.668 g/cm³
- High Porosity
- High Water Holding Capacity
- High Carbon Sequester
MORTAR MIX DESIGN & EXPERIMENTAL SETUP

Mix design:
- M0
- M1
- M2
- M3
- M4
- M5

Curing regimes:
- Water curing
- Air curing
- Sealed under vacuum

Test Methods:
- 132 mortar cubes of size 50 mm tested for compressive strength
- 25x280mm mortar prisms tested for drying shrinkage using LVDTs and temperature monitoring with thermocouples embedded in the specimen
- 25x25mm thin and polished sections of mortar tested for visual observations of the interfacial transition zone under scanning electron microscope & x-ray mapping
EXPERIMENTAL FINDINGS – UNDERSTANDING THE MICROSCALE BEHAVIOUR

- Better Mechanical Interlocking
- Enhanced Interfacial Transition Zone
- Reduced Micro cracking
- Internal Curing Potential

Micro Scale Analysis of Plain Mortar

Micro Scale Analysis of Biochar Mortar
EXPRESSMENT FINDINGS – UNDERSTANDING THE MESOSCALE BEHAVIOUR

- Almost Equal Structural & Durable Performance to Normal Mortar up to 10% Volume Fraction
- Reduction in Weight - Lightweight Mortar
- Reduced Shrinkage Cracking in Dry Environments
- Internal Curing Potential for a Selected Optimum Mix Design
PATH FORWARD

POTENTIAL RESEARCH PATHS
- Biochar in Concrete Masonry Blocks
- Biochar as Cementitious Material in Concrete
- Biochar as Sand Replacement in Structural Concrete Elements
- Sister Material to Biochar
- Biochar in Asphalt Pavement

RESEARCH PATH DEVELOPMENT

PHASE 1 – LITERATURE REVIEW & TECH TRANSFER
- Literature Review of Different Biochar Forms
- Field Exploration Study in Different Regions in Europe

PHASE 2 – MATERIAL ACQUISITION, FURTHER TESTING & ANALYSIS
- Material Acquisition
- Physicochemical Characterization & Testing
- Analysis of Results

PHASE 3 – MIX DESIGN OF CONCRETE MASONRY BLOCKS
- Formulation of Concrete Masonry Blocks mix design
- Cast Concrete Masonry Blocks & Test for Compressive & Flexural Strength, Water Absorption & Durability at Specific Time Intervals

PHASE 4 – LAB TESTING FOR CO₂ ABSORPTION
- Cast Concrete Masonry Blocks & Test for CO₂ Absorption in Closed Tank. Monitor CO₂ Levels in Tank, Collect Data & Analyze
- Test for Compressive Strength, Water Absorption & Durability of Block After CO₂ Injection

PHASE 5 – UPSCALE EXPERIMENT TO ROOM SCALE, COMFORT MONITORING & DATA COLLECTION
- Build 2 Rooms each made of Biochar & Sand Concrete Masonry Blocks
- Monitor Thermal Comfort & CO₂ Levels in Rooms
- Collect Data, Analyze & Formulate Reports

RESEARCH TIMELINE
- Oct 2018
- Dec 2018 PHASE 1
- Mar 2019 PHASE 2
- Aug 2019 PHASE 3
- Feb 2020 PHASE 4
- Oct 2020 PHASE 5
Beirut: Carbon Sink City

Possibilities

Section of Typical External Walls

If 10% of Biochar is used:

- 13% reduction in weight of mortar
- 4.17 Million Tons/year reduction of Municipal Solid Waste in Lebanon.
- 1 million Tons/year reduction of Sand consumption in Lebanon.