The jury was impressed by the thoroughly developed and comprehensively presented design, which manages the integration of a coherent technical and structural concept, yet retains spatial and conceptual simplicity. The promising approach for sustainability considers the full life-cycle of the structures including dismantling and recycling energy sources. The design approach has been successfully developed as an integrative and spirited aspect of the overall concept and achieves the desired spatial liberty, transparency between the inside and outside, and child-friendly atmosphere.

The design utilizes a pre-engineered factory-built structural system for maximum flexibility and adaptability. This has been combined with a highly innovative learning environment that is a replicable model of sustainability. The building comprises a ready-made kit-of-parts assembled from off-the-shelf components. The design is a highly flexible design comprised of two independent structural systems: A pre-engineered metal building shell and a recon-figurable interior mezzanine. As such it accommodates a variety of uses, spatial configurations, and site conditions. The long-span steel structure is free of interior columns to allow maximum flexibility for interior space planning. Exterior cladding is non-structural allowing a variety of façade treatments, and the use of moment and braced steel frames allow walls, doors, and windows to be placed free of structural constraints. The size of the building can easily be adjusted by expanding or contracting the number of structural bays.

The best charter schools inspire their students to excel. As architects, we strive to design to the same level of excellence that they inspire in their students. As pioneers in the field, we believe in the power of environmental quality and resource efficiency – Planet Earth. The design strives to be as energy efficient and sustainable as possible, and incorporates a number of systems to achieve its net zero energy goal. The building is wrapped by a solar skin which creates a double façade for solar, acoustic, and environmental control in response to site conditions and orientation. Consisting of modular panels of different aperture, transparency profile, and directionality, the solar screen will be used to optimize daylighting and energy performance. Additionally, features that will enable the prototype to achieve net zero energy use include rooftop PV panels, abundant natural daylight and ventilation, and a low-energy heating and cooling system which uses phase change materials.

The design utilizes a pre-engineered factory-built structural system for maximum flexibility and adaptability. This has been combined with a highly innovative learning environment that is a replicable model of sustainability. The building comprises a ready-made kit-of-parts assembled from off-the-shelf components. The design is a highly flexible design comprised of two independent structural systems: A pre-engineered metal building shell and a recon-figurable interior mezzanine. As such it accommodates a variety of uses, spatial configurations, and site conditions. The long-span steel structure is free of interior columns to allow maximum flexibility for interior space planning. Exterior cladding is non-structural allowing a variety of façade treatments, and the use of moment and braced steel frames allow walls, doors, and windows to be placed free of structural constraints. The size of the building can easily be adjusted by expanding or contracting the number of structural bays.