Through the Looking-Glass
Odek Center for Nodding Disease, Odek, Uganda

Summary and appraisal of the project by the jury
The playful and colorful explosion of forms in the project illustrate its focus as a space for children in the Center for Nodding Disease in Odek, Uganda. The building is planned as the second phase of a larger complex dedicated to the care of children with Nodding Disease, an affliction about which little is known but is widespread in Uganda. This “playground-campus” is the result of a participatory design process that incorporates the formal vernacular of traditional architecture as filtered through the drawings of its future inhabitants. The buildings will be constructed using local labor and traditional techniques with the aim of showcasing a post-conflict architecture, allowing inhabitants to rebuild their lives and homes.

The jury greatly appreciated the “Alice Through the Looking-Glass” strategy of tilting, coloring, and exaggerating the vernacular architecture of the region into something both new and exuberant. Further appreciation was given to the consideration the project gives not just to its main inhabitants but to using the project as a catalyst for community rebuilding after decades of war and displacement. By building up social and physical infrastructure and keeping the project by means of local ownership, the project is a contribution to the healing not just of children affected by Nodding Disease but of the village community as a whole.

Statements on the sustainability of the project by the author
Local financing model for sustainable building process and maintenance regime
The financing model is a combination of stakeholder inputs. The engagement built a sense of ownership among the local residents, and these families and local leaders have donated land for the project and are making bricks for the construction phase. The local government is giving policy and installations support, while several thick walls are located to use thermal orientations, openings allow for cross ventilation, and can accommodate solar panels for lighting needs, the roof pitch can achieve comfort: rainwater is collected from the roof and reused in the toilets, storm water is channeled to the demonstration gardens, the roof pitch can accommodate solar panels for lighting needs, the orientations, openings allow for cross ventilation, while several thick walls are located to use thermal mass to release heat in cool nights. Efficient appliances are proposed for the toilets so that less water is used. The greening of the roof extends to the ground, creating a building-agriculture that contributes to the microclimate of the semi-arid area. These local strategies birth forth a new meaning of green building.

Local techniques have been employed in a contemporary way to minimize negative impact on the environment. The building will show that natural techniques can achieve comfort: rainwater is collected from the roof and reused in the toilets, storm water is channeled to the demonstration gardens, the roof pitch can accommodate solar panels for lighting needs, the orientations, openings allow for cross ventilation, while several thick walls are located to use thermal mass to release heat in cool nights. Efficient appliances are proposed for the toilets so that less water is used. The greening of the roof extends to the ground, creating a building-agriculture that contributes to the microclimate of the semi-arid area. These local strategies birth forth a new meaning of green building.

Local innovation gives a contemporary twist to age-old building techniques and cultures
Local techniques have been employed in a contemporary way to minimize negative impact on the environment. The building will show that natural techniques can achieve comfort: rainwater is collected from the roof and reused in the toilets, storm water is channeled to the demonstration gardens, the roof pitch can accommodate solar panels for lighting needs, the orientations, openings allow for cross ventilation, while several thick walls are located to use thermal mass to release heat in cool nights. Efficient appliances are proposed for the toilets so that less water is used. The greening of the roof extends to the ground, creating a building-agriculture that contributes to the microclimate of the semi-arid area. These local strategies birth forth a new meaning of green building.

Local participation allows the design scheme to evolve during design and construction
We asked children and families in Odek, to identify key materials. Soil is used to made the bricks, local eucalyptus trees provide all construction wood, plaster is from made from a soil and cow-dung mix, local grass for the thatch roof and the stones are assembled to create a floor slab. The project is therefore a revival and reinterpretation of long forgotten techniques. Through participation architecture ceases to be just a pencil on paper, and becomes a process that responds to community need.

Further authors
Philip Murungi, engineer, Studio Flame, Kampala, Uganda